
A Highly Flexible, Distributed Data Analysis

Framework for Industry 4.0 Manufacturing

Systems

Ricardo Silva Peres, Andre Dionisio Rocha, Andre Coelho, and Jose Barata

CTS - UNINOVA, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa,
2829-516 Caparica, Portugal

{ricardo.peres,andre.rocha,jab}@uninova.pt,

am.coelho@campus.fct.unl.pt

Abstract. In modern manufacturing, high volumes of data are con-
stantly being generated by the manufacturing processes. However, only
a small percentage is actually used in a meaningful way.
As part of the H2020 PERFoRM project, which follows the Industry 4.0
vision and targets the seamless reconfiguration of robots and machin-
ery, this paper proposes a framework for the implementation of a highly
flexible, pluggable and distributed data acquisition and analysis system,
which can be used for both supporting run-time decision making and
triggering self-adjustment methods, allowing corrections to be made be-
fore failures actually occur, therefore reducing the impact of such events
in production.

Keywords: Data Analysis, Industry 4.0, Manufacturing, Cyber-Physical
Systems

1 Introduction

1.1 Interconnected Manufacturing Systems - Industry 4.0

Nowadays, the world is facing a huge and disruptive paradigm shift based on
the IT developments of the last few decades. Several concepts such as Cloud
Computing, Internet of Things, Big Data, etc. are creating one of the most
challenging and drastic changes in the manufacturing world. The Industry 4.0
[1, 2] concept emerged as an idea for the perfect production environment based
on the modern interconnected world.

More than the connectivity among the shop floor components and the diverse
departments of each company, in Industry 4.0 all of the value chain activities as
well as the entire product life cycle intervenients are connected and are capable
of producing and sharing information among themselves [3].

Aligned with this vision, the PERFoRM project targets the conceptual trans-
formation of existing industrial production systems towards the plug and pro-
duce paradigm, achieving flexible manufacturing environments based on full in-
teroperability and seamless reconfiguration of harmonized machinery and robots
as a response to operational or business variations.



Currently, a large amount of manufacturing information is already generated,
however most of it is just stored and not processed in order to extract useful
knowledge. Hence, with the recent advent of Data Mining it is possible to an-
alyze this data and somehow generate relevant information for the production
environment [4, 5].

As part of the PERFoRM project, this paper proposes a framework for the
implementation of a data acquisition and processing system, capable of coping
with the requirements imposed by the Industry 4.0 vision. The remainder of this
paper is organized as follows. Subsection 1.2 provides an overview of related work
on the topic of data analysis in manufacturing. Afterwards, Section 2 describes
the proposed architecture, followed by Section 3 which provides the guidelines
for a possible implementation of said architecture. Finally, some closing remarks
and details regarding future work are provided in Section 4.

1.2 Data Analysis in Manufacturing

Data Analysis can be used to obtain meaningful knowledge or information from
raw data, applying algorithms in order to achieve it. Typically, the concept of
data mining is often discussed and used due to this purpose.

In a manufacturing context, several approaches and algorithms are used to
gather knowledge. [6] reports about the development of an environment for pro-
viding knowledge based on search, evaluation and generalization, which addresses
a clear challenge of suggesting good operating strategies for specific factory con-
ditions at the proper time. Neural Networks (NN) and Generic Algorithms (GA)
were used to identify the data structure, whereas the data extracted was in form
of performance obtained. Finally, this type of knowledge can be used to increase
the system accuracy. IGem was developed by [7] and its an artificial intelligent
tool that uses fuzzy logic, GA algorithms and rule base knowledge which is ap-
plied to the diamond industry. The results presented demonstrated the reduction
of processing time by 25% when analyzing data. In maintenance, EXPERT-MM
was developed to work with historical failure data in order to suggest preventive
maintenance schedules [8].

Regarding knowledge extraction, algorithms are applied based on what kind
of knowledge it is aimed to retrieve. [9] makes an extensive review on data mining
functions and applicability, which aims to identify several kinds of knowledge to
be mined such as job shop scheduling, quality control, fault diagnostics, manufac-
turing process, maintenance, defect analysis, manufacturing systems, condition
based monitoring, supply chain and others. For most of them, one could ap-
ply decision tree algorithms, regression functions, fuzzy clustering techniques,
entropy based analysis methods, neural networks, generic algorithms, sampling
methods, among others.

One interesting point to rethink is suggested by [10] which refers to how data
is being organized during processing. As he clearly states, the processing model
and the data model are often disjoint areas resulting in distributed computing
systems to focus only on ordering tasks instead of including abstract models for



data processing. This type of models act as a schema for data processing which
logically optimize the process.

The previously discussed techniques can be described as an aggregation of
complex algorithms and methods that have been object of studies and improve-
ments. However, [11] presents a different solution for the problem of data ex-
traction and processing. In this case one specific type of raw data (data related
to transitions) is processed to assert if a device needs maintenance based on the
computation of moving averages and trends of key values. These types of meth-
ods are simpler but, nonetheless, provide recognition of abnormal behaviors or
irreversible problems with the resources, which is a valuable asset for manufac-
turers. The example used was a clamp opening or closing time, providing real
time information of important resources within a manufacturing process.

2 Layered Data Analysis Architecture

In this section an overview of the proposed real-time data analysis architecture
is provided, along with its main goals, requirements and a description of its
individual structural elements.

Being a critical part of the PERFoRM ecosystem, the proposed solution is
responsible for not only performing the context-aware data analysis, thus gen-
erating predictive data that can be used to trigger the system’s self-adjustment
mechanisms (e.g. reconfiguration), but also for the acquisition of the data itself
at both the manufacturing cell and component levels.

Additionally, a given number of requirements are imposed on the architec-
ture’s design. First and foremost, in line with PERFoRM’s vision the architecture
should be generic enough to be applicable to various different scenarios, being
open so as to not depend on the existence of a single communication protocol
or standard on the shop floor, thus facilitating its industrial integration and
adoption. Moreover, it needs to be capable of adapting to changes to the process
or its components in run-time, for instance in terms of both pluggability and
changes to the Key Performance Indicators (KPI) to be analyzed. Furthermore,
data and context representation should follow PERFoRM’s common data model
in order to enable the seamless interoperability and data exchange between the
data analysis architecture and the remaining PERFoRM system elements and
tools.

Another point to take into account is the aspect of scalability. In order to en-
sure that the approach is applicable to a varied number of different use cases, it
needs to be capable of scaling according to each use case requirements. However,
as a system scales its complexity tends to increase to higher levels as a conse-
quence. Thus, in order to tackle this challenge, a layered architectural structure
is proposed. An overview of this approach can be seen in Figure 1.

As depicted, the proposed architecture is divided into several layers in order
to decrease the overall complexity, each operating according to a specific purpose
on top of the shop floor, which stands as the base layer. Each of the subsequent
layers is described in further detail in the remaining subsections of Section 2.



Fig. 1. Architecture Layered View.

2.1 Data Acquisition Layer (DAL)

Standing directly above the shop floor layer, the DAL is responsible not only
for the acquisition of relevant data but also by its pre-processing in terms of the
extraction of context-aware information.

In regards to the data acquisition, the DAL needs to be flexible in order to
adapt to changes coming directly from its sources in the shop floor, be it in terms
of new components being plugged or unplugged, or even changes to the KPIs
that need to be collected and analyzed. Also, the communication with the shop
floor needs to be specified in a generic way, thus allowing the consideration of
different requirements from different potential use case. For instance, a specific
case might present time constraints in the order of weeks or days, while a different
one might require data to be collected and analyzed in near real-time, therefore
requiring different approaches.

To this end, the DAL follows an approach similar to that presented in an-
other successful European project, FP7 PRIME [12, 13, 11], in which a Cyber-
Physical System (CPS) based approached was used. This approach is centered
on a Multiagent System (MAS) architecture which abstracts both components
and subsystems (e.g. cells, workstations) alike. The adoption of MAS technology
confers additional flexibility and robustness to the DAL, allowing it to quickly
adapt to changes in the shopfloor.

No less important is the existence of generic communication interfaces which
allow the agents to interact with the environment in a ”black-box” fashion,
regardless of the underlying technology or communication standard. In PER-
FoRM’s case, this means that the approach can be implemented in a way that
the agents can communicate with the hardware via the harmonization middle-
ware, or if required (e.g. specific time constraints), a different instantiation of
these interfaces would allow an approach closer to edge computing. Upon col-



lecting the raw data, the agents can pre-process it in order to extract more
meaningful information before passing it on to the upper layers, in this case the
Data Queue Layer (DQL), which is described in further detail in Subsection 2.2.

2.2 Data Queue Layer (DQL)

The DQL’s main purpose is to serve as a distributed continuous buffer for the
data coming from the DAL. It should add another layer of robustness, allowing
for high-volume streams of data to be transported from the DAL in order to be
consumed by the data analysis network. As such, it should provide reliability in
terms of message delivery, which can be achieved through the sequencing and
replication of data messages.

More than a simple message queue, the DQL should be capable of not only
handling a high throughput of data (in order for it to cope with the aforemen-
tioned varied time constraints), but also to enrich and filter or aggregate the
buffered data as required in order to facilitate its consumption by the Data
Processing Layer (DPL).

2.3 Data Processing Layer (DPL)

The last core layer is the DPL, responsible for the actual data analysis of the
inputs coming from the lower layers. In the context of PERFoRM, this analysis
is meant to generate predictive data related to the KPIs relevant for each use
case, producing forecasts and identifying trends and correlations between these
indicators.

As such, this layer enables the early detection of possible disturbances, degra-
dation or KPI deviation from the expected boundaries in the shop floor. Hence,
due to this capacity for predictive analysis, the DPL is a key-enabler of condition-
based maintenance, allowing manufacturers to schedule maintenance operations
before a failure actually occurs, thus diminishing the direct impact on produc-
tion. Additionally, the DPL is not limited to assisting in run-time decision mak-
ing (e.g. by interfacing with external data visualization tools, which are however
outside the scope of this work), being also capable of triggering self-adjustment
methods (e.g. self-reconfiguration) which can promptly perform corrections in
order to return the system to a state of normal operation.

3 Data Analysis Framework

This section aims at providing the guidelines for a possible implementation of the
architecture described in Section 2. Each of the layers and related technologies
is addressed in the coming subsections, namely the MAS-based CPS (DAL),
the Apache Kafka data queue (DQL) and the Apache Storm stream processing
network (DPL), detailed in Subsections 3.1 and 3.2, respectively.



3.1 MAS-based Cyber-Physical System in the DAL

Following the example set in [11, 13], the DAL’s CPS can be implemented fol-
lowing a similar pluggable MAS-based approach. The Java Agent DEvelopment
framework (JADE) [14] is indicated as it provides a robust infrastructure sup-
porting the agent’s core behavioral logic and communication, as well a wide array
of auxiliary tools to further facilitate the development process. A representation
of the comprised agents, as well as their respective interactions is shown in Figure
2.

Fig. 2. JADE Data Acquisition and Pre-Processing MAS Overview.

The DAL implementation consists in a MAS network comprising two main
different agent types. The Component Monitoring Agent (CMA) is responsi-
ble for abstracting individual components (e.g. clamp, robot) in the shop floor,
collecting relevant raw data and pre-processing it according to a given set of
rules. The data acquisition is performed through a generic Data Collection In-
terface (DCI), thus allowing this communication to be executed both through
PERFoRM’s middleware, or directly through the implementation of required
communication protocols (e.g. instantiating an OPC UA connector), depending
only on the DCI implementation.

Each CMA can then be associated to a Subsystem Monitoring Agent (SMA),
to which it passes on its extracted and pre-process data, enabling the extraction
of more complex information at a higher abstraction level. Hence, the SMA
performs similarly to the CMA, being however responsible for abstracting a
subsystem (e.g robotic cell, workstation), which can in turn be associated to



other SMAs. The agents’ interactions are FIPA compliant, following the FIPA
Request protocol [15].

Both agent types relay their data to the upper layers through a generic
Output Communication Interface (OCI), allowing the CPS to be independent
from the technology used to implement the remaining layers.

3.2 Data Message Queue and Processing Network

Any implementation of the DQL needs to take into consideration the require-
ments specified in 2.2, more specifically in terms of scalability, capacity to handle
high volumes of data, low latency and reliability.

With this in mind, Apache Kafka [16, 17] is proposed as a possible framework
to implement such a data queue. Kafka is a fault-tolerant, highly scalable, dis-
tributed messaging system. In essence, Kafka functions with a publish-subscribe
approach, allowing producers (data sources, in this case the agents in the DAL)
to publish data messages which are maintained in categories called topics. These
can be subscribed by consumers (represented by the DPL nodes), being divided
into ordered partitions supporting message persistence and replication. Kafka’s
message management is optimized for low latency and high throughput, with
documented uses for even real-time applications [18].

Finally, for the DPL Apache Storm is considered, being a distributed stream
processing system which easily integrates with both databases and queuing tech-
nologies (such as the aforementioned Apache Kafka). Storm’s processing runs in
topologies, which are essentially series of nodes each containing certain process-
ing logic, with the associated links specifying the data flow. The framework
integrating each of these technologies can be seen in Figure 3.

Fig. 3. Framework Overview.



With the whole framework integrated, data is collected by the CPS via the
DCI, being pre-processed at both the component and subsystems levels. After-
wards, each agent publishes its respective data to the Kafka queue, where it is
aggregated in topics according to its specific category (e.g. component origin
or data group). Finally, data is continuously consumed by the Storm topology,
which can in turn compute the trends and correlations necessary in order to
generate meaningful predictive data which can be used for run-time decision
making support or as a trigger for self-adjustment methods.

4 Conclusions and Future Work

This paper presents the framework of a highly flexible and distributed system
for the acquisition and analysis of manufacturing data. A layered architecture is
proposed, which is capable of coping with changes and disturbances in the shop
floor, as well as with changing requirements in terms of monitored KPIs or time
constraints.

Furthermore, guidelines regarding the implementation details and the re-
lated technologies were provided, illustrating a possible implementation of the
proposed architecture.

As part of the H2020 PERFoRM project, future efforts will focus on the
implementation of each of the proposed architecture’s layers according to the
described framework. This will be followed by the instantiation of the system in
the project’s different use cases, allowing for it to be validated across different
application domains each with varying time constraints and requirements.

Acknowledgments .

This project has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement No 680435.

References

1. Alasdair Gilchrist. Introducing industry 4.0. In Industry 4.0, pages 195–215.
Springer, 2016.

2. Rainer Drath and Alexander Horch. Industrie 4.0: Hit or hype?[industry forum].
IEEE industrial electronics magazine, 8(2):56–58, 2014.

3. T Stock and G Seliger. Opportunities of sustainable manufacturing in industry
4.0. Procedia CIRP, 40:536–541, 2016.

4. Jay Lee, Hung-An Kao, and Shanhu Yang. Service innovation and smart analytics
for industry 4.0 and big data environment. Procedia CIRP, 16:3–8, 2014.

5. Shiyong Wang, Jiafu Wan, Daqiang Zhang, Di Li, and Chunhua Zhang. Towards
smart factory for industry 4.0: a self-organized multi-agent system with big data
based feedback and coordination. Computer Networks, 101:158–168, 2016.

6. Kevin R Caskey. A manufacturing problem solving environment combining evalu-
ation, search, and generalisation methods. Computers in Industry, 44(2):175–187,
2001.



7. Tony Holden and Matee Serearuno. A hybrid artificial intelligence approach for
improving yield in precious stone manufacturing. Journal of Intelligent manufac-
turing, 16(1):21–38, 2005.

8. Dentcho Batanov, Nagen Nagarur, and Prapan Nitikhunkasem. Expert-mm: A
knowledge-based system for maintenance management. Artificial intelligence in
engineering, 8(4):283–291, 1993.

9. Alok Kumar Choudhary, Jenny A Harding, and Manoj Kumar Tiwari. Data mining
in manufacturing: a review based on the kind of knowledge. Journal of Intelligent
Manufacturing, 20(5):501–521, 2009.

10. Reginald Cushing, Adam Belloum, Marian Bubak, and Cees de Laat. Towards
a data processing plane: An automata-based distributed dynamic data processing
model. Future Generation Computer Systems, 59:21–32, 2016.

11. Andre Dionisio Rocha, Ricardo Peres, and Jose Barata. An agent based monitoring
architecture for plug and produce based manufacturing systems. In 2015 IEEE
13th International Conference on Industrial Informatics (INDIN), pages 1318–
1323. IEEE, 2015.

12. André Diońısio Rocha, Diogo Barata, Giovanni Di Orio, Tiago Santos, and José
Barata. Prime as a generic agent based framework to support pluggability and re-
configurability using different technologies. In Doctoral Conference on Computing,
Electrical and Industrial Systems, pages 101–110. Springer International Publish-
ing, 2015.

13. André Diońısio Rocha, Ricardo Silva Peres, Luis Flores, and Jose Barata. A mul-
tiagent based knowledge extraction framework to support plug and produce capa-
bilities in manufacturing monitoring systems. In Mechatronics and its Applications
(ISMA), 2015 10th International Symposium on, pages 1–5. IEEE, 2015.

14. Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. Developing Multi-agent
Systems with JADE, pages 89–103. Springer Berlin Heidelberg, Berlin, Heidelberg,
2001.

15. Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. Developing multi-agent
systems with a fipa-compliant agent framework. Software-Practice and Experience,
31(2):103–128, 2001.

16. Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A distributed messaging system
for log processing. In Proceedings of the NetDB, pages 1–7, 2011.

17. Guozhang Wang, Joel Koshy, Sriram Subramanian, Kartik Paramasivam, Mam-
mad Zadeh, Neha Narkhede, Jun Rao, Jay Kreps, and Joe Stein. Building a repli-
cated logging system with apache kafka. Proceedings of the VLDB Endowment,
8(12):1654–1655, 2015.

18. Ken Goodhope, Joel Koshy, Jay Kreps, Neha Narkhede, Richard Park, Jun Rao,
and Victor Yang Ye. Building linkedin’s real-time activity data pipeline. IEEE
Data Eng. Bull., 35(2):33–45, 2012.

View publication statsView publication stats

https://www.researchgate.net/publication/314159564

